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Abstract

The well known constant rank constraint qualification [Math. Program. Study 21:110–126, 1984] intro-
duced by Janin for nonlinear programming has been recently extended to a conic context by exploiting the
eigenvector structure of the problem. In this paper we propose a more general and geometric approach for
defining a new extension of this condition to the conic context. The main advantage of our approach is that
we are able to recast the strong second-order properties of the constant rank condition in a conic context.
In particular, we obtain a second-order necessary optimality condition that is stronger than the classical one
obtained under Robinson’s constraint qualification, in the sense that it holds for every Lagrange multiplier,
even though our condition is independent of Robinson’s condition.

Keywords: Constraint qualifications; Constant rank; Second-order optimality conditions; Second-order
cone programming; Semidefinite programming.

1 Introduction

In the classical nonlinear programming (NLP) context, the so-called constant rank constraint qualification
(CRCQ) [37] was first presented as a tool for stability analysis, which stood out for being independent
of the usual Mangasarian-Fromovitz constraint qualification (MFCQ) and strictly weaker than the lin-
ear independence constraint qualification (LICQ). For instance, it has been applied with this purpose in
NLP [29, 37, 47, 48, 50], mathematical programs with equilibrium constraints (MPEC) [34], generalized
equations [35], and bilevel optimization [45, 60]. Also, it is the origin of several other constant rank-type
conditions, such as the constant positive linear dependence [10, 12, 52] and the constant rank of the subspace
component [11], which have been successfully applied in the convergence analysis of iterative algorithms.
To name a few algorithms whose convergence theory relies on CRCQ and its variants, we point out: an
augmented Lagrangian method [3, 13], a regularized interior point method [53], sequential quadratic pro-
gramming methods for NLP [42, 52, 59] and MPEC [39], and some relaxation schemes for MPEC [36, 58].
In fact, a particularly interesting aspect of CRCQ that makes it suitable for supporting practical algorithms
is the fact it can be roughly interpreted as a relaxation of LICQ that is able to separate the core information
of the problem, ignoring redundant constraints. Moreover, all linear programming problems satisfy CRCQ,
in contrast with LICQ and MFCQ.

Besides convergence of algorithms and stability analysis, CRCQ was used in several contexts, such as
NLP [4, 13, 46], MPEC [33], vector optimization [44], and continuous-time NLP [49], for studying necessary
second-order optimality conditions. One of the main goals of this paper is to bring such results to more gen-
eral conic programming contexts, namely nonlinear second-order cone programming (NSOCP) and nonlinear
semidefinite programming (NSDP). As far as we know, the best second-order results for these problems have
appeared in a well-known paper by Bonnans, Cominetti, and Shapiro [21]. Basically, they derived no-gap
second-order optimality conditions for problems over second-order regular cones [21, Definition 3], such as
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NSDP and NSOCP, under the well-known Robinson’s CQ (see (7) on page 5, or [54]), which is the natural
extension of MFCQ to conic programming. In particular, their second-order necessary condition states that
every local solution that satisfies Robinson’s CQ must also satisfy the following: for every critical direction,
there exists a Lagrange multiplier (possibly depending on this direction), such that a certain quadratic form
is nonnegative with respect to such direction and multiplier. However, the second-order condition that is
obtained under CRCQ in NLP replaces “there exists a Lagrange multiplier” with “for every Lagrange mul-
tiplier”, which is stronger than the one of [21]. Although this stronger condition can be obtained from [21]
after assuming that the Lagrange multiplier is unique, which is ensured by stronger constraint qualifications
such as the nondegeneracy condition (see (8) on page 5), this assumption is often regarded as too stringent.
To the best of our knowledge, no second-order result concerning every Lagrange multiplier, without assuming
its uniqueness, has been presented so far in the literature of nonlinear conic programming. Moreover, no
extension of CRCQ has been proposed for nonlinear conic programming until very recently.

In 2019, Zhang and Zhang [61] proposed an extension of CRCQ and its relaxed version [47] for NSOCP,
but it was later discovered that their results were incorrect [5]. This event has motivated us to investigate
other possible extensions of CRCQ to conic problems, and their properties. The first step in this direction
was made in [6], for NSOCP and NSDP problems with multiple constraints. The idea of [6] is to rewrite some
of the conic constraints as locally equivalent NLP constraints, whenever possible, and then jointly applying
nondegeneracy and the NLP version of CRCQ to the resulting problem. Later, in [8], based on the ideas
from [7], we improved this strategy by exploiting the eigenvector structure of the semidefinite cone to deal
with the conic constraints that could not be rewritten as NLP constraints. This approach was also extended
to NSOCP problems in [9]. In simple terms, the condition of [8, 9] demands the rank of some families of
functions to remain constant along every sequence converging to the point of interest – roughly speaking, a
constant rank “by paths” – therefore, this extension is highly specialized to deal with sequences generated by
iterative algorithms, but since this rank may vary between paths, it is likely unsuitable for other purposes.
Indeed, the focus of [8, 9] was the global convergence of a large class of algorithms to first-order stationary
points, and no second-order results were provided in it. Nevertheless, it is reasonable to expect that CRCQ
may have multiple independent and correct extensions, each one of them generalizing at least one important
aspect of it, but perhaps not all of them.

A common feature of all previous attempts of extending CRCQ to a conic context is an approach based
on re-characterizing the conic program and the nondegeneracy condition, trying to make them as similar to
NLP and LICQ as possible, so the extension of CRCQ would come out straightforwardly. This is somehow
understandable because, even in NLP, the CRCQ condition has never received a geometrical interpretation
before. In this paper, we present a new geometrical characterization of CRCQ for NLP in terms of the faces
of the nonnegative orthant, which suggests a natural extension of it to NSOCP and NSDP. A point that we
should stress is that contrary to our previously mentioned works, the definition of CRCQ that we present here
is very simple. We prove that this extension is a constraint qualification strictly weaker than nondegeneracy
and independent of Robinson’s CQ, as it should be, and we also compare it with the condition of [8, 9].
Then, as an application, we show that every local solution of the problem satisfies the strong second order
optimality condition, provided our extension of CRCQ holds. Moreover, just as it happens in NLP, our result
does not demand a priori any specific condition over the Lagrange multiplier set, besides nonemptiness.

The structure of this paper is as follows: Section 2 consists of a nonlinear conic programming review
emphasizing some aspects of the theory that are not commonly discussed in the literature; in Section 3, we
analyze CRCQ for NLP and we show how it can be interpreted in terms of the faces of the nonnegative
orthant. In Sections 4 and 5, we propose extensions of CRCQ for NSOCP and NSDP, respectively, and we
prove some of its properties. Finally, in Section 6, we conclude this paper with a short discussion and some
ideas of prospective work.

We end this section by introducing some of our basic notation: throughout this paper, E will denote a
finite-dimensional linear space equipped with the inner product 〈·, ·〉; and for a given set S ⊆ E, we will
denote the polar of S by

S◦ := {z ∈ E | 〈z, y〉 ≤ 0, ∀y ∈ S}
and the orthogonal complement of S will be denoted by S⊥. The notations cl(S), int(S), bd(S), and
bd+(S) stand for the topological closure, interior, boundary, and boundary excluding the origin of S in
E, respectively. The smallest cone that contains S will be denoted by cone(S), and the smallest linear
space that contains S will be denoted by span(S). Moreover, we denote by Dg(x) the derivative of a twice
continuously differentiable function g : Rn → E at a given point x ∈ Rn, and by Dg(x)T the adjoint of
Dg(x), which by definition satisfies 〈Dg(x)d, z〉 = 〈d,Dg(x)T z〉 for all d ∈ Rn and z ∈ E. Similarly, D2g(x)
denotes the second-order derivative of g at x, and the action of D2g(x) over d1, d2 ∈ Rn will be denoted by
D2g(x)[d1, d2].
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2 Common framework: nonlinear conic programming

In this section, we will review some classical results of convex analysis, and first- and second-order optimality
conditions and constraint qualifications for NSOCP and NSDP. These problems are the cornerstones of two
independent research fields, but they can also be seen as particular cases of a nonlinear conic programming
(NCP) problem, given by

Minimize f(x),
s.t. g(x) ∈ K, (NCP)

where f : Rn → R and g : Rn → E are twice continuously differentiable, and K ⊆ E is a closed convex
pointed cone that is assumed to be nonempty. We will use (NCP) as a framework to discuss the common
traits of NSOCP and NSDP simultaneously, before moving to specific traits. Throughout the whole paper,
we will denote the feasible set of (NCP) by Ω := {x ∈ Rn | g(x) ∈ K}.

Let us begin with two key ideas that underlie all the results of this paper: reducibility and faces. Recall
from [24, Definition 3.135] that for any given linear spaces E and F, a cone K ⊆ E is said to be reducible
(more precisely, C2-reducible) at a point y ∈ K, to a closed convex pointed cone C ⊆ F, if there exists
a neighborhood N of y and a twice continuously differentiable reduction function Ξ: N → F (possibly
depending on y) such that Ξ(y) = 0, DΞ(y) is surjective, and

K ∩N = {z ∈ N | Ξ(z) ∈ C}.

In general, reductions are meant to be used as a simplification tool that allows one to interpret any point
of K as a vertex of some other cone C, and then extend the results obtained at C to K in a smooth way. In
this work, we are also interested in the geometrical properties of the reduced cone C as well; in particular,
in its faces.

To make a brief revision, we recall that F is a face of C if every open line segment that contains a point
of F also has its extrema in F ; that is, if for every y ∈ F and every z, w ∈ C such that y = αz + (1 − α)w
for some α ∈ (0, 1), we have that z, w ∈ F . Further, when there exists some η ∈ C◦ such that

F = C ∩ {η}⊥,

that is, when F is the intersection between C and one of its supporting hyperplanes, we say that F is an
exposed face of C. Some cones, like the nonnegative orthant, the semidefinite cone, and the second-order
cone, are facially exposed, meaning all of their faces are exposed. We use the notation F E C to say that F
is a face of C.

Now, to contextualize our results, we will revisit the classical theory of NCP in the next section, with a
special emphasis in the work of Guignard [32], and Bonnans, Cominetti, and Shapiro [21]. In particular, we
stress some aspects of the NCP theory that are often disregarded in the literature.

2.1 Review of first-order optimality conditions

For any set S ⊆ E and any z ∈ S, recall the (Bouligand) tangent cone to S at z, defined as

TS(z) :=
{
y ∈ E | ∃{tk}k∈N → 0+, ∃{yk}k∈N → y such that z + tky

k ∈ S for all k ∈ N
}
.

Our review of first-order constraint qualifications for (NCP) revolves around two particular cones: the
tangent cone TΩ(x̄) to Ω at a feasible point x̄ ∈ Ω, and the linearized tangent cone

LΩ(x̄) := {d ∈ Rn | Dg(x̄)d ∈ TK(g(x̄))} ,

where TK(g(x̄)) is the tangent cone to K at g(x̄). The importance of these cones for our analyses lies on the
necessary optimality conditions for (NCP) associated with them. Namely, given any local minimizer x̄ ∈ Ω
of (NCP), it is easy to see that 〈∇f(x̄), d〉 ≥ 0 for all d ∈ TΩ(x̄); that is,

−∇f(x̄) ∈ TΩ(x̄)◦. (1)

This is one of the simplest necessary optimality conditions, sometimes called the first-order geometric nec-
essary condition for the optimality of x̄. However, it may be difficult to use (1) when Ω does not admit an
explicit characterization since TΩ(x̄)◦ may not be easily computable in this case. The polar of LΩ(x̄), on the
other hand, admits a practical description, as it is shown in the following lemma, extracted from the proof
of [32, Theorem 2] by Guignard:
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Lemma 2.1. Let x̄ ∈ Ω. Then, LΩ(x̄)◦ = cl(H(x̄)), where

H(x̄) := Dg(x̄)TNK(g(x̄)) =
{
Dg(x̄)T z | z ∈ NK(g(x̄))

}
, (2)

and NK(g(x̄)) := TK(g(x̄))◦ is the normal cone to K at g(x̄).

Proof. By the bipolar theorem (see e.g. [24, Proposition 2.40]), it suffices to prove that LΩ(x̄) = H(x̄)◦.
Take any direction d ∈ LΩ(x̄) and let z ∈ TK(g(x̄))◦. By definition, Dg(x̄)d ∈ TK(g(x̄)) and then

0 ≥ 〈Dg(x̄)d, z〉 = 〈d,Dg(x̄)T z〉.

Thus, since z is arbitrary, we obtain that d ∈ H(x̄)◦; and since d is also arbitrary, it follows that LΩ(x̄) ⊆
(H(x̄))◦. Conversely, assume that there exists a vector v ∈ H(x̄)◦ such that v /∈ LΩ(x̄), that is, Dg(x̄)v /∈
TK(g(x̄)). By the strong separation theorem (see e.g. [24, Theorem 2.14]), there exists a vector y such that
〈y,Dg(x̄)v〉 > 0 and 〈y, z〉 < 0, for all z ∈ TK(g(x̄)), that is, y ∈ NK(g(x̄)). Therefore, Dg(x̄)T y ∈ H(x̄),
which is a contradiction with 〈Dg(x̄)T y, v〉 > 0, since v ∈ H(x̄)◦.

Recall that since K is a closed convex cone, we have

NK(g(x̄)) = {z ∈ K◦ | 〈g(x̄), z〉 = 0} .

Then, combining the first-order geometric necessary condition and Lemma 2.1 yields the following theorem,
also by Guignard:

Theorem 2.1 (Theorem 2 of [32]). Let x̄ ∈ Ω be a local minimizer of (NCP). If TΩ(x̄)◦ = LΩ(x̄)◦ and
H(x̄) is closed, then there exists some λ̄ ∈ K◦ such that

∇f(x̄) +Dg(x̄)T λ̄ = 0 and 〈g(x̄), λ̄〉 = 0. (3)

Theorem 2.1 can be seen as the “dual form” of the first-order geometric condition (1), and any vector
λ̄ ∈ K◦ that satisfies the Karush-Kuhn-Tucker conditions (3) is called a Lagrange multiplier associated with
x̄. Moreover, the collection of all Lagrange multipliers associated with x̄ will be denoted by Λ(x̄), and when
Λ(x̄) 6= ∅ we say that x̄ is a KKT point of (NCP).

The hypothesis of Theorem 2.1,

TΩ(x̄)◦ = LΩ(x̄)◦ and H(x̄) is closed, (4)

is known in the literature as Guignard’s CQ, and it is the weakest assumption that makes the KKT conditions
necessary for the local optimality of x̄, in the sense of: if Λ(x̄) 6= ∅ for every continuously differentiable
function f that has a local minimizer constrained to Ω at x̄, then Guignard’s CQ must also hold at x̄ [31,
Corollary 3.4]. Börgens et al. [25, Definition 5.11] defined Guignard’s CQ for optimization problems in
Banach spaces as a single equality

TΩ(x̄)◦ = H(x̄),

which is equivalent to (4) due to Lemma 2.1. In NLP, Guignard’s CQ is usually stated in the form TΩ(x̄)◦ =
LΩ(x̄)◦, since the closedness of H(x̄) follows from the polyhedricity of Rm+ . However, as it can be seen in
the following example, the equality TΩ(x̄)◦ = LΩ(x̄)◦ on its own may not ensure that Λ(x̄) 6= ∅ when H(x̄)
is not closed.

Example 2.1. Consider the following problem, presented in [2, Subsection 2.1]:

Minimize f(x) := −x2,
s.t. g(x) := (x1, x1, x2) ∈ K3,

where K3 is the three-dimensional second-order cone, given by

K3 =

{
(x1, x2, x3) ∈ R3 | x1 ≥

√
x2

2 + x2
3

}
.

Note that its feasible set is given by Ω = {x ∈ R2 | x1 ≥ 0 and x2 = 0}, and that the point x̄ = (0, 0) ∈ R2 is
a local minimizer of it. Any Lagrange multiplier λ := (λ1, λ2, λ3) ∈ K◦3 associated with x̄ must satisfy(

0
−1

)
+ λ1

(
1
0

)
+ λ2

(
1
0

)
+ λ3

(
0
1

)
=

(
0
0

)
, (5)

4



which implies that λ3 = 1 and λ1 = −λ2. But since λ ∈ K◦3 = −K3, then this vector must also satisfy
−λ1 ≥

√
λ2

1 + 1, which does not have a solution with λ3 = 1 and λ1 = −λ2. Therefore, x̄ does not
satisfy the KKT conditions. However, note that TΩ(x̄) = Ω = LΩ(x̄) and consequently, TΩ(x̄)◦ = LΩ(x̄)◦.
Additionally, note that

H(x̄) = {(y1 + y2, y3) ∈ R2 | (y1, y2, y3) ∈ K◦3}
is not closed, because the sequence

{(
− 1
k
,−1

)}
k∈N is contained in H(x̄) since

(
− 1
k
− k, k,−1

)
∈ K◦3 , ∀k ∈ N,

but its limit point (0,−1) does not belong to H(x̄).

The condition
TΩ(x̄) = LΩ(x̄) and H(x̄) is closed, (6)

which implies Guignard’s CQ, is known as Abadie’s CQ (see also Börgens et al. [25, Definition 5.5]), and
Example 2.1 tells us that the closedness of H(x̄) cannot be omitted in this case, either. The reason why we
emphasize this point is that, as far as we know, it appears that Abadie’s CQ and Guignard’s CQ are rarely
seen in the literature of finite-dimensional conic programming problems other than NLP, and the closedness
of H(x̄) is rarely regarded in the study of constraint qualifications. In contrast, H(x̄) plays an important
role in our results.

In finite-dimensional conic contexts, the focus is usually on constraint qualifications that already imply
H(x̄) is closed without requiring it explicitly, such as Robinson’s CQ, that holds at a given point x̄ ∈ Ω
when

0 ∈ int(Im(Dg(x̄))−K + g(x̄)). (7)

In particular, if K has nonempty interior, then Robinson’s CQ holds at x̄ if, and only if, there exists some
d ∈ Rn such that

g(x̄) +Dg(x̄)d ∈ int(K).

Robinson’s CQ is stronger than Abadie’s CQ, and it implies that Λ(x̄), besides being closed and convex, is
also nonempty and bounded [24, Theorem 3.9] when x̄ is a local minimizer of (NCP). If K is reducible at
the point g(x̄) to a cone C by the reduction function Ξ, then the constraint g(x) ∈ K is locally equivalent to
the reduced constraint G(x) ∈ C, where G := Ξ ◦ g. In this case, Robinson’s CQ holds at x̄ for the original
constraint if, and only if, it holds for the reduced constraint at the same point.

Another well-known constraint qualification in the context of conic programming is the nondegeneracy
condition, which holds at x̄ when

Im(Dg(x̄)) + lin(TK(g(x̄))) = E, (8)

where lin(TK(g(x̄))) = TK(g(x̄)) ∩ −TK(g(x̄)) denotes the largest linear space contained in TK(g(x̄)); that
is, its lineality space. This CQ has first appeared in Shapiro and Fan’s article [57] for NSDP, by the name
transversality, and then it was generalized to NCP by Shapiro, in [56]. Nondegeneracy is strictly stronger
than Robinson’s CQ and it is known that if x̄ is a local minimizer of (NCP) that satisfies nondegeneracy, then
Λ(x̄) is a singleton (see, for instance, [24, Proposition 4.75]). Moreover, if K is reducible, nondegeneracy
is equivalent to the surjectivity of DG(x̄), as it can be easily deduced from the equality lin(TK(g(x̄))) =
Ker(DΞ(g(x̄))); see [24, Section 4.6.1].

Due to their implications over the Lagrange multiplier set, nondegeneracy and Robinson’s CQ are cur-
rently the most important CQs in the study of second-order optimality conditions for (NCP), which will be
reviewed in the next subsection.

2.2 Second-order optimality conditions

Before starting, recall that the (inner) second-order tangent set to a nonempty set S ⊆ E, at a point z ∈ S,
in a direction y ∈ TS(z), is defined by

T 2
S (z, y) :=

{
w ∈ E

∣∣∣∣ z + ty +
t2

2
w + o(t2) ∈ S, ∀t > 0

}
, (9)

which is closed for all such z, y, and S. In addition, if S is convex, then T 2
S (z, y) is also convex [24, Page

163]; and if S is second-order regular, as it is the case of the semidefinite cone and the second-order cone,
then T 2

S (z, y) is nonempty [24, Page 202].
The role of second-order necessary optimality conditions is to provide additional information when first-

order conditions are not meaningful enough; that is, along the directions in the cone

C(x̄) := {d ∈ Rn | d ∈ TΩ(x̄), 〈∇f(x̄), d〉 = 0} ,
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which is often called the cone of critical directions, or simply, the critical cone of (NCP) at x̄. Ben-Tal and
Zowe [19] presented a geometric second-order necessary optimality condition for (NCP), stating that if x̄ is
a local minimizer of the problem, then

〈∇f(x̄), s〉+ 〈∇2f(x̄)d, d〉 ≥ 0 (10)

for every d ∈ C(x̄) and every s ∈ T 2
Ω (x̄, d). Then, Kawasaki [41, Theorem 5.1] made the first advances to

derive a “dual form” of (10) under Robinson’s CQ assuming that K is a closed convex cone with nonempty
interior. This result was later generalized and refined by Cominetti [26, Theorem 4.2] to the case where K is
assumed to be a closed convex set. An important improvement was made afterwards by Bonnans, Cominetti,
and Shapiro [21], who clarified several key points of the previous works, and obtained no-gap1 second-order
conditions, in particular, for second-order regular cones [21, Section 4]. Let us recall Bonnans, Cominetti,
and Shapiro’s necessary condition in the context of second-order regular cones:

Theorem 2.2 (Theorem 3.1 of [21]). Let x̄ ∈ Ω be a local minimizer of (NCP) that satisfies Robinson’s
CQ. Then, for every direction d ∈ C(x̄), there exists some λ̄d ∈ Λ(x̄), such that

dT∇2f(x̄)d+ 〈D2g(x̄)[d, d], λ̄d〉 − σ(d, x̄, λ̄d) ≥ 0, (11)

where
σ(d, x̄, λ̄d) := sup

{
〈w, λ̄d〉 | w ∈ T 2

K(g(x̄), Dg(x̄)d)
}

(12)

is the support function of T 2
K(g(x̄), Dg(x̄)d) with respect to λ̄d.

The term σ(d, x̄, λ̄d) characterizes a possible curvature of the set K at g(x̄) along Dg(x̄)d, and it is often
called the “sigma-term” in the classical literature (for instance, in the book [24]). Since λ̄d ∈ Λ(x̄) and K
is convex, σ(d, x̄, λ̄d) is always nonnegative; and if K is polyhedral, as in NLP, then the sigma-term is zero
everywhere. See also the discussion on polyhedricity and extended polyhedricity in [24, Section 3.2.3]. It is
also worth mentioning that the second-order optimality condition of Theorem 2.2 can be derived without
constraint qualifications, using Fritz John (generalized) multipliers [24, Theorem 3.50].

Although the condition of Theorem 2.2 is generally considered very natural and useful in the conic
programming context and in NLP, a stronger condition where the Lagrange multiplier λ̄ does not depend
on d has several potential uses, in view of the NLP literature. This motivates the following definition:

Definition 2.1. Let x̄ ∈ Ω be a KKT point and let λ̄ ∈ Λ(x̄) be given. We say that the pair (x̄, λ̄) satisfies
the second-order condition (SOC) when

dT∇2f(x̄)d+ 〈D2g(x̄)[d, d], λ̄〉 − σ(d, x̄, λ̄) ≥ 0, (13)

for every d ∈ C(x̄).

In NLP, the existence of some λ̄ ∈ Λ(x̄) such that SOC holds for the pair (x̄, λ̄) is known as the semi-
strong second-order necessary optimality condition [20]. Moreover, when SOC holds for every λ̄ ∈ Λ(x̄),
then we obtain what is known as the strong second-order necessary optimality condition [4]. However, while
the condition of Theorem 2.2 is necessary for optimality under Robinson’s CQ, this is not true, in general,
for the strong and semi-strong conditions. In fact, there is a counterexample published by Baccari [17,
Section 3] (see also Anitescu [14] and Arutyunov [15]), that shows that Robinson’s CQ does not guarantee
the existence of a λ̄ ∈ Λ(x̄) such that the pair (x̄, λ̄) satisfies SOC (see also the extended version of [18] for
details). Under nondegeneracy, the set Λ(x̄) is a singleton and, in this case, the semi-strong and the strong
second-order conditions both coincide with the condition of Theorem 2.2.

As far as we know, there is no result concerning the semi-strong and strong second-order conditions
without assuming uniqueness of Lagrange multipliers in the literature of conic programming, except for
NLP. In NLP, this has been addressed by means of constant rank-type constraint qualifications, which is
also the path we will follow in this paper.

1The term “zero gap”, or “no gap”, is often used in NLP to refer to a second-order condition that does not require constraint
qualifications to be necessary (using Fritz John/generalized Lagrange multipliers), and that becomes sufficient after replacing an
inequality by a strict inequality. However, in this paper, we say that a condition has zero gap when it satisfies the latter, possibly
subject to a constraint qualification, in the same way as [21].
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3 Revisiting constant rank CQs in NLP

In this section we will revisit some constant rank-type conditions for NLP from a geometrical point of view,
in order to extend it to a more general conic context later on. Consider the standard NLP problem

Minimize f(x),
s.t. gj(x) ≥ 0, j = 1, . . . ,m,

gj(x) = 0, j = m+ 1, . . . ,m+ p,
(NLP)

which is a particular case of (NCP) with E = Rm+p, K = Rm+ × {0}p, and g(x) := (g1(x), . . . , gm+p(x)). As
usual in NLP, given a feasible point x̄ of (NLP), we will denote the set of active inequality constraints at x̄
as A(x̄) := {j ∈ {1, . . . ,m} | gj(x̄) = 0}.

Now, let us recall Janin’s constant rank constraint qualification as it was first presented in [37].

Definition 3.1 (CRCQ [37]). Let x̄ be a feasible point of (NLP). We say that the constant rank constraint
qualification for NLP (CRCQ) holds at x̄ if there exists a neighborhood V of x̄ such that, for every subset
J ⊆ A(x̄) ∪ {m+ 1, . . . ,m+ p}, the rank of the family {∇gj(x)}j∈J remains constant for all x ∈ V.

To prove that CRCQ is a constraint qualification, Janin proved that it implies LΩ(x̄) ⊆ TΩ(x̄), which in
turn implies Abadie’s CQ in NLP. His proof is what motivates the requirement to consider every subset J
of A(x̄) ∪ {m+ 1, . . . ,m+ p} in Definition 3.1; indeed, after picking a direction

d ∈ LΩ(x̄) =

{
d ∈ Rn

∣∣∣∣ ∇gj(x̄)T d ≥ 0, j ∈ A(x̄),
∇gj(x̄)T d = 0, j ∈ {m+ 1, . . . ,m+ p}

}
,

in order to prove that d ∈ TΩ(x̄), it is sufficient to have the constant rank assumption for the constraints
that correspond to the indices j ∈ A(x̄) such that ∇gj(x̄)T d = 0. Since those indices depend on d, and they
are not determined a priori, one considers all possibilities. However, as it was noted several years later by
Minchenko and Stakhovski [47], taking subsets of the equality constraints is completely superfluous, even for
Janin’s proof. The “correct” definition of CRCQ was then presented in [47] as a relaxed version of CRCQ.

Definition 3.2 (RCRCQ [47]). Let x̄ be a feasible point of (NLP). We say that relaxed constant rank
constraint qualification for NLP (RCRCQ) holds at x̄ if there exists a neighborhood V of x̄ such that, for
every subset J ⊆ A(x̄), the rank of the family {∇gj(x)}j∈J∪{m+1,...,m+p} remains constant for all x ∈ V.

In order to bring these CQs to the conic setting, our approach in this manuscript consists first in
generalizing two key ideas of NLP: the notion of “active constraints” and the notion of “subsets of indices
of active constraints”. The former can be interpreted in the general context as a consequence of reducibility.
Indeed, for any given x̄ ∈ Ω, let s := |A(x̄)| and note that Rm+ × {0}p is reducible at g(x̄) to the cone

C := Rs+ × {0}p

in a neighborhood N of g(x̄) by the mapping Ξ: N → Rs+p such that

Ξ(y) := (yj)j∈A(x̄)∪{m+1,...,m+p}

for every y ∈ N , and in this case the reduced constraint function of (NLP) at x̄ takes the form

G(x) := Ξ(g(x)) = (gj(x))j∈A(x̄)∪{m+1,...,m+p}. (14)

Therefore, in NLP, reducing the problem is essentially the same as simply disregarding inactive constraints
around the point x̄. The notion of “subsets of indices of the active constraints”, on the other hand, can be
interpreted in terms of faces.

It is easy to see that every face of Rs+ can be written in terms of a unique subset of the canonical vectors
of Rs, which we will denote by c1, . . . , cs. That is, F E Rs+ if, and only if, there exists some J ⊆ {1, . . . , s}
such that

F = Rs+
⋂
j∈J

{ci}⊥, (15)

where F and J are clearly in a one-to-one correspondence.
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c1
c2

c3

Figure 1: Faces of R3
+

For example, in Figure 1, the vertex of R3
+ corresponds to J = {1, 2, 3}; the one-dimensional faces

cone(c1), cone(c2), and cone(c3) correspond to J = {2, 3}, J = {1, 3}, and J = {1, 2}, respectively; the left,
front, and bottom two-dimensional faces correspond to J = {1}, J = {2}, and J = {3}, respectively; and
R3

+ itself corresponds to J = ∅.
Thus, considering all subsets of active constraints at x̄ is the same as considering all faces of the reduced

cone C = Rs+ × {0}p. This discussion suggests a natural characterization of RCRCQ in terms of the faces of
the reduced cone, as follows:

Proposition 3.1. Let x̄ be a feasible point of (NLP). Then, RCRCQ holds at x̄ if, and only if, there exists

a neighborhood V of x̄ such that, for each F E R|A(x̄)|
+ × {0}p, the dimension of

DG(x)T [F⊥]

remains constant for every x ∈ V, where G is as defined in (14).

Proof. Let s := |A(x̄)| and, without loss of generality, let us assume that A(x̄) = {1, . . . , s}. Moreover, let
c1, . . . , cs+p be the canonical basis of Rs+p, and let F E Rs+×{0}p. Note that F = R×{0}p, where R E Rs+.
Then, there exists some J ⊆ {1, . . . , s} such that

F =

(
Rs+

⋂
j∈J

{ci}⊥
)
× {0}p,

which implies
F⊥ = R⊥ × Rp = span ({cj | j ∈ J ∪ {s+ 1, . . . , s+ p}}) ,

so
DG(x)T [F⊥] = span({DG(x)T cj}j∈J∪{s+1,...,s+p}) = span({∇gj(x)}j∈J∪{m+1,...,m+p}). (16)

Consequently,
dim(Dg(x)T [F⊥]) = rank({∇gj(x)}j∈J∪{m+1,...,m+p}).

The conclusion follows from the one-to-one correspondence between F and J .

The equivalent form of RCRCQ presented in Proposition 3.1 allows us to visualize what it actually
describes, geometrically. Indeed, recall that Rn = DG(x)−1(span(F )) + (DG(x)−1(span(F )))⊥ and it is
elementary to see that

(DG(x)−1(span(F )))⊥ = DG(x)T [F⊥].

This implies the following relation:

dim(DG(x)−1(span(F ))) + dim(DG(x)T [F⊥]) = n.

Thus, RCRCQ can be equivalently stated as the constant dimension of DG(x)−1(span(F )) for every x ∈ V
at each F E C = R|A(x̄)|

+ × {0}p. The set DG(x)−1(span(F )), on the other hand, can be regarded as a
“linear approximation” of G−1(C) around x̄, since DG(x) is the best linear approximation of G at x ∈ V
and, similarly, the faces of C can also be seen as “linear approximations” of it at G(x̄). In fact, each face
induces a potentially different linear approximation of G−1(C), which in turn coincides with Ω around x̄.
So roughly speaking: RCRCQ holds at x̄ when the dimension of every linear approximation of the feasible
set Ω at x̄ is invariant to small perturbations. In particular, defining gJ(x) := (gj(x))j∈J∪{m+1,...,m+p} for
every J ⊆ A(x̄), this characterization is equivalent to the constant dimension of Ker(DgJ(x)) for all x in a
neihborhood of x̄ at every J ⊆ A(x̄), which can also be trivially seen from the original definition of RCRCQ.

8



Note that the characterization of RCRCQ from Proposition 3.1 and the discussion above do not appear
to be limited to the context of NLP, contrary to its original definition. In the next two sections, we will
prove that the same idea can be applied to NSOCP and NSDP, respectively, giving rise to new constraint
qualifications.

Remark 3.1. It is possible to obtain a characterization of CRCQ in the same style of Proposition 3.1.
To do this, it suffices to reformulate the equality constraints gj(x) = 0 as a pair of inequality constraints
gj(x) ≥ 0 and −gj(x) ≥ 0, for j ∈ {m + 1, . . . ,m + p}. That is, consider K := Rm+ × Rp+ × Rp+ and
g(x) := (g1(x), . . . , gm+p(x),−gm+1(x), . . . ,−gm+p(x)) in Proposition 3.1.

In view of Remark 3.1, we see that there are multiple ways of dealing with equality constraints in our
approach, and they are not all equivalent. The suitability of each approach may depend on the application,
but we highlight that our approach is able to deal with equality constraints regardless of how they are
modelled. For simplicity, equality constraints are omitted in our exposition. See also Remarks 4.2 and 5.3.
In the following two sections, we extend the ideas of this section to NSOCP and NSDP.

4 Nonlinear second-order cone programming

In this section, we consider the following problem:

Minimize f(x),
s.t. gj(x) ∈ Kmj , j = 1, . . . , q,

(NSOCP)

where Kmj := {(z0, ẑ) ∈ R × Rmj−1 | z0 ≥ ‖ẑ‖} when mj > 1 and K1 = {x ∈ R | x ≥ 0}. Since Kmj is
self-dual, we have that z ∈ K◦mj

if, and only if, −z ∈ Kmj , for any j = 1, . . . , q. Also, note that (NSOCP)
can be seen as a particular case of (NCP) with

K := Km1 × . . .×Kmq and g(x) := (g1(x), . . . , gq(x)).

Given a feasible point x̄ ∈ Ω, let us define the following index sets:

Iint(x̄) := {j ∈ {1, . . . , q} | gj(x̄) ∈ int(Kmj )},

IB(x̄) := {j ∈ {1, . . . , q} | gj(x̄) ∈ bd+(Kmj )},
I0(x̄) := {j ∈ {1, . . . , q} | gj(x̄) = 0},

which consist of the indices of the constraints that hit the interior, the boundary excluding zero, and
the vertex of their respective cones. For simplicity, we will omit equality constraints; we should mention,
nevertheless, that our results can be easily adapted to deal with equality constraints — see Remark 4.2 for
details. As another measure to avoid cumbersome notation, we will assume that IB(x̄) = {1, . . . , |IB(x̄)|};
this assumption will often be recalled throughout this section.

Following Bonnans and Ramı́rez [22], for any given x̄ ∈ Ω, we see that K is reducible to

C :=
∏

j∈I0(x̄)

Kmj × R|IB(x̄)|
+ (17)

in a neighborhood N1× . . .×Nq of g(x̄) by the function Ξ := (Ξj)j∈I0(x̄)∪IB(x̄), where Ξj : Nj → Rmj is the
identity function for every j ∈ I0(x̄), and Ξj : Nj → R is given by

Ξj(y) := y0 − ‖ŷ‖ (18)

for every j ∈ IB(x̄), and every y ∈ Rmj . This leaves us with the reduced constraint

G(x) ∈ C,

where G(x) := Ξ(g(x)) = (Gj(x))j∈I0(x̄)∪IB(x̄),

Gj(x) := Ξj(gj(x)) =

{
gj(x), if j ∈ I0(x̄),
φj(x), if j ∈ IB(x̄),

(19)

and φ : Rn → R|IB(x̄)| has its j-th component given by

φj(x̄) := [gj(x)]0 − ‖ĝj(x̄)‖. (20)
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Note that g(x) ∈ K if, and only if, G(x) ∈ C for every x sufficiently close to x̄.
By [22, Lemma 25], we see that the linearized cone of the original constraints of (NSOCP) at a given

x̄ ∈ Ω can be computed as

LΩ(x̄) =

{
d ∈ Rn Dgj(x̄)d ∈ Kmj , j ∈ I0(x̄)

Dφ(x̄)d ∈ R|IB(x̄)|
+

}
,

and that it coincides with the linearized cone of the reduced constraint at x̄. Moreover, it follows from [1,
Lemma 15] that for each j = Iint(x̄) ∪ IB(x̄), we have 〈λ̄j , gj(x̄)〉 = 0, if, and only if,

λ̄j =

{
0, if j ∈ Iint(x̄),

[λ̄j ]0
[gj(x̄)]0

Rmjgj(x̄), if j ∈ IB(x̄),
(21)

where Rmj is a matrix defined as

Rmj :=

[
1 0
0 −Imj−1

]
, (22)

and Imj−1 is the (mj − 1)× (mj − 1) identity matrix. Therefore, still following [22], the point x̄ satisfies the
KKT conditions with respect to the constraint g(x) ∈ K if, and only if, there exist some vectors λ̄j ∈ K◦mj

,
j ∈ I0(x̄) ∪ IB(x̄), such that:

∇f(x̄) +
∑

j∈I0(x̄)

Dgj(x̄)T λ̄j +
∑

j∈IB(x̄)

[λ̄j ]0
[gj(x̄)]0

Dgj(x̄)TRmjgj(x̄) = 0, (23)

which also coincides with the KKT conditions with respect to the reduced constraint G(x) ∈ C. In fact, note
that for each j ∈ IB(x̄), the reduced Lagrange multiplier with respect to the reduced constraint φj(x) ≥ 0
is simply [λ̄j ]0.

With this in mind, we are ready to present our extension of CRCQ (and RCRCQ) to NSOCP inspired
by the characterization of Proposition 3.1.

4.1 A facial constant rank constraint qualification for NSOCP

Recall that, for each j = 1, . . . , q, the cone Kmj is facially exposed, meaning every F E Kmj can be written

as the intersection of one of its supporting hyperplanes, say {η}⊥ with η ∈ Kmj . In fact, although Kmj has
infinitely many faces when mj > 2, they are limited to only three types:

• The vertex, {0}, which can be characterized by any η ∈ int(Kmj );

• The cone Kmj itself, which is characterized by η = 0;

• A ray at the boundary of Kmj , starting at the vertex and passing through a point z ∈ bd+(Kmj ),
which can be characterized by any η ∈ cone(Rmj z) \ {0}.

Moreover, every F E C has the form

F =

 ∏
j∈I0(x̄)

Fj

×R,
where Fj E Kmj for every j ∈ I0(x̄), and R E R|IB(x̄)|

+ . Then, for every x ∈ Rn, sufficiently close to x̄, we
have

DG(x)T [F⊥] =
∑

j∈I0(x̄)

Dgj(x)T [F⊥j ] +Dφ(x)T [R⊥],

where φ(x) := (φj(x))j∈IB(x̄). This motivates the following definition:

Definition 4.1. Let x̄ be a feasible point of (NSOCP). We say that the facial constant rank property holds
at x̄ if there exists a neighborhood V of x̄ such that for each F E C, the dimension of DG(x)T [F⊥] remains
constant for all x ∈ V, where G is given by (19) and C is given by (17).

Recall the discussion after Proposition 3.1 and note that Definition 4.1 can be equivalently stated in terms
of the constant dimension of DG(x)−1(span(F )) for all x ∈ V and every F E C. That is, the facial constant
rank property holds at x̄ when the dimension of every linear approximation of the feasible set remains locally
invariant around x̄. Although this characterization is somewhat more intuitive than Definition 4.2, the latter
is easier to use.
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The facial constant rank condition is sufficient for the equality TΩ(x̄) = LΩ(x̄) to hold. To prove this, we
employ the main result of Janin’s paper [37], but the version we use is a slightly different characterization
found in [4, Proposition 3.1]. Despite the fact we work in a context more general than NLP, we use the same
result that was used in NLP.

Proposition 4.1. ([4, Proposition 3.1]) Let {ζi(x)}i∈I be a finite family of twice continuously differentiable
functions ζi : Rn → R, i ∈ I, such that the family of its gradients {∇ζi(x)}i∈I remains with constant rank
in a neighborhood of x̄, and consider the linear subspace

S := {y ∈ Rn | 〈∇ζi(x̄), y〉 = 0, i ∈ I} .

Then, there exists some neighborhoods V1 and V2 of x̄, and a diffeomorphism ψ : V1 → V2, such that:

(i) ψ(x̄) = x̄;

(ii) Dψ(x̄) = In;

(iii) ζi(ψ
−1(x̄+ y)) = ζi(ψ

−1(x̄)) for every y ∈ S ∩ (V2 − x̄) and every i ∈ I.

Moreover, the degree of differentiability of ψ is the same as of ζi, for all i ∈ I.

For the last part of the above proposition, about the degree of differentiability of ψ, we refer to Minchenko
and Stakhovski [48, Page 328]. Now, we are able to prove the main result of this section:

Theorem 4.1. Let x̄ be a feasible point of (NSOCP). If the facial constant rank property holds at x̄, then
TΩ(x̄) = LΩ(x̄).

Proof. It suffices to show that LΩ(x̄) ⊆ TΩ(x̄). Let d ∈ LΩ(x̄) and suppose that x̄ satisfies the facial constant
rank property. Let

F :=

 ∏
j∈I0(x̄)

Fj

×R, (24)

where Fj E Kmj , j ∈ I0(x̄), are defined as

Fj :=


Kmj if Dgj(x̄)d ∈ int(Kmj ),
cone(Dgj(x̄)d), if Dgj(x̄)d ∈ bd+(Kmj ),
{0}, if Dgj(x̄)d = 0.

(25)

and R E R|IB(x̄)| is given by

R := R|IB(x̄)|
+

⋂
j∈J

{cj}⊥, (26)

where cj is the j-th vector of the canonical basis of R|IB(x̄)|, and J := {j ∈ IB(x̄) | ∇φj(x̄)T d = 0}. Recall
that we are assuming for simplicity that IB(x̄) = {1, . . . , |IB(x̄)|}, and note that DG(x̄)d ∈ F .

Now, for every j ∈ I0(x̄) such that Dgj(x̄)d ∈ bd+(Kmj ), let Aj ∈ Rmj×mj−1 be any matrix with full

column rank such that Im(Aj) = {Dgj(x̄)d}⊥, and observe that

Dgj(x)T [F⊥j ] = span

({
Dgj(x)TAij

}
i=1,...,mj−1

)
for every such j, whereAij denotes the i-th column ofAj . Similarly, for every j ∈ I0(x̄) such thatDgj(x̄)d = 0,
we have

Dgj(x)T [F⊥j ] = span({∇gj,i(x)}i=0,...,mj−1),

where ∇gj,i(x) denotes the i-th column of Dgj(x)T . And for every j such that Dgj(x̄)d ∈ int(Kmj ), we have

Dgj(x)T [F⊥j ] = {0}. Finally, observe that R⊥ = span({cj}j∈J) and then

Dφ(x)T [R⊥] = span
(
{∇φj(x)}j∈J

)
.

Therefore, for every x ∈ V, where V is the neighborhood of x̄ given by Definition 4.1, the linear space

DG(x)T [F⊥] =
∑

j∈I0(x̄)

Dgj(x)T [F⊥j ] +Dφ(x)T [R⊥] (27)
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is generated by the family of vectors:⋃
j∈I0(x̄)

Dgj(x̄)d∈bd+(Kmj
)

i=1,...,mj−1

{
Dgj(x)TAij

} ⋃
j∈I0(x̄)

Dgj(x̄)d=0
i=0,...,mj−1

{∇gj,i(x)}
⋃
j∈J

{∇φj(x)}, (28)

which implies that the dimension of (27) equals the rank of (28), for every x ∈ V. Since this dimension
remains constant in V, so does the rank of (28). This means we can apply Proposition 4.1 to the family of
functions

ζi,j(x) :=


〈Aij , gj(x)〉, if j ∈ I0(x̄), Dgj(x̄)d ∈ bd+(Kmj ), i = 1, . . . ,mj − 1,
gj,i(x), if j ∈ I0(x̄), Dgj(x̄)d = 0, i = 0, . . . ,mj − 1,
φj(x), if j ∈ J,

(29)

where gj,i(x) denotes the i-th entry of gj(x) for j ∈ J . Then, consider the following subspace:

S :=

 y ∈ Rn
ATj Dgj(x̄)y = 0, if j ∈ I0(x̄), Dgj(x̄)d ∈ bd+(Kmj )
Dgj(x̄)y = 0, if j ∈ I0(x̄), Dgj(x̄)d = 0
∇φj(x̄)T y = 0, if j ∈ J ,

 ,

and note that d ∈ S, so it follows that there exists a local diffeomorphism ψ for which items (i), (ii) and
(iii) of Proposition 4.1 are satisfied. Now, define the arc ξ(t) by

ξ(t) := ψ−1(x̄+ td),

for t ∈ R small enough so that x̄+ td ∈ V2, where V2 is given by Proposition 4.1. Then, we obtain that

lim
t→0+

ξ(t) = x̄, lim
t→0+

ξ(t)− x̄
t

= d.

To complete the proof, it suffices to show that ξ(t) remains feasible for every sufficiently small t ≥ 0, so
this is our goal from this point onwards. Proposition 4.1 tells us that there exists some ε > 0 such that
ζi,j(ξ(t)) = ζi,j(x̄) = 0 for every t ∈ (−ε, ε). In terms of F , this means that

G(ξ(t)) ∈ span(F )

for every such t, which follows directly from (29). Now, let us analyse each case separately:

1. For each index j ∈ I0(x̄), consider the Taylor expansion of gj(ξ(t)) around t = 0, given by

gj(ξ(t)) = gj(ξ(0)) + tDgj(ξ(0))ξ′(0) + o(t)

= gj(x̄) + tDgj(x̄)Dψ−1(x̄)d+ o(t)

= tDgj(x̄)d+ o(t)

(30)

Then, we split in three sub-cases:

• If Dgj(x̄)d ∈ int(Kmj ), then it follows from (30) that gj(ξ(t)) ∈ Kmj for every t ∈ [0, ε), shrinking
ε if necessary;

• If Dgj(x̄)d ∈ bd+(Kmj ), then gj(ξ(t)) ∈ span(Dgj(x̄)d) due to (25), and it follows from (30) that
g(ξ(t)) ∈ cone(Dgj(x̄)d) for every t ∈ [0, ε), taking a smaller ε if needed;

• If Dgj(x̄)d = 0, then g(ξ(t)) = 0 for every t ∈ [0, ε), due to (25).

2. Since φ(ξ(t)) ∈ R for every t ∈ [0, ε), for each index j ∈ J , we have φj(ξ(t)) = 0. On the other hand,
for each j /∈ J , consider the Taylor expansion of φj(ξ(t)) around t = 0:

φj(ξ(t)) = φj(ξ(0)) + t∇φj(ξ(0))T ξ′(0) + o(t) = t∇φj(x̄)T d+ o(t),

and since ∇φj(x̄)T d > 0 for every j /∈ J , it also follows that φj(ξ(t)) > 0 for every t ∈ [0, ε), taking a
smaller ε if necessary.

Thus, G(ξ(t)) ∈ F for every t ∈ [0, ε), which also implies that G(ξ(t)) ∈ K for every such t, completing the
proof.
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A useful information that can be extracted from the proof above is an equivalent characterization of the
facial constant rank property (Definition 4.1) without faces:

Corollary 4.1. Let x̄ ∈ Ω. Then, the facial constant rank property holds at x̄ if, and only if, there exists a
neighborhood V of x̄ such that: for all subsets J1, J2 ⊆ I0(x̄), J3 ⊆ IB(x̄), such that mj > 1 for all j ∈ J1,
and for all ηj ∈ bd+(Kmj ), j ∈ J1, the rank of the family⋃

j∈J1
i=1,...,mj

{
Dgj(x)TAij

} ⋃
j∈J2

i=0,...,mj−1

{∇gj,i(x)}
⋃
j∈J3

{∇φj(x)}

remains the same for all x ∈ V, where Aj ∈ Rmj×mj−1 can be any matrix with full column rank such that
Im(Aj) = {ηj}⊥, for each j ∈ J1, and Aij denotes the i-th column of Aj.

Before proceeding, we will make a short discussion about Theorem 4.1 and its implications:

Remark 4.1. Note that if all constraints are affine, then every feasible point satisfies the facial constant
rank property. Then, it follows from Theorem 4.2 that TΩ(x̄) = LΩ(x̄) in this case, for every x̄ ∈ Ω. We
highlight this fact because when it is paired with Example 2.1, two things can be concluded: first, the facial
constant rank property alone is not a CQ for (NSOCP); second, the only reason why constraint linearity
is not a CQ for NSOCP is that H(x̄) may not be closed. When H(x̄) is closed, facial constant rank is
a CQ, and so is constraint linearity. In other words, the above discussion, in view of the minimality of
Guignard’s CQ, allows us to conclude that the closedness of H(x̄) is the weakest CQ for linear second-order
cone programming problems.

The discussion of Remark 4.1, together with Theorem 4.2, motivates our extension of CRCQ (and
RCRCQ) to NSOCP:

Definition 4.2. Let x̄ be a feasible point of (NSOCP) and let H(x̄) be the set defined in (2). We say that
the constant rank constraint qualification for NSOCP (CRCQ) holds at x̄, if it satisfies the facial constant
rank property and, in addition, the set H(x̄) is closed.

When m1 = m2 = . . . = mq = 1, problem (NSOCP) reduces to a NLP problem. Moreover, since the
faces of K1 are {0} and R+, the facial constant rank property (Definition 4.1) reduces to CRCQ in this case,
and so does Definition 4.2. Moreover, as mentioned before, it follows directly from Theorem 4.1, that:

Theorem 4.2. The CRCQ condition of Definition 4.2 implies Abadie’s CQ.

Since the nondegeneracy condition for (NSOCP) holds at a given x̄ ∈ Ω if, and only if, DG(x̄)T is
injective, then by continuity of DG, nondegeneracy implies that DG(x)T remains injective for every x close
enough to x̄. Therefore, it follows that the nondegeneracy condition implies CRCQ as in Definition 4.2.
However, the converse is not true, as it can be seen in the following example:

Example 4.1. Consider the following constraint

g(x) := (x, x) ∈ K2,

at the feasible point x̄ = 0. Since K2 is a polyhedral cone and g is linear, then CRCQ as in Definition 4.2
holds at x̄. However, Robinson’s CQ is not satisfied at x̄ = 0, since

Dg(x̄)d = d(1, 1) /∈ int(K2)

for every d ∈ R. Consequently, nondegeneracy is not satisfied, either.

Observe that Example 4.1 also shows that CRCQ does not imply Robinson’s CQ. Conversely, Robinson’s
CQ does not imply CRCQ either, meaning they are not related, just as it happens with CRCQ and MFCQ
in NLP. Let us show this with an example:

Example 4.2. Consider the constraint:

g(x) := (x2, x
2
1) ∈ K2

at the point x̄ = (0, 0). Robinson’s CQ holds at x̄, since d = (0, 1) satisfies

g(x̄) +Dg(x̄)d = (1, 0) ∈ int(K2).

On the other hand, take the face F = {0} and note that

Dg(x)T [F⊥] = span

({[
0
1

]
,

[
2x1

0

]})
has dimension 2 for every x such that x1 6= 0, and dimension 1 at x̄.
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Remark 4.2. To consider (NSOCP) with an equality constraint in the form h(x) = 0, where h : Rn → Rp,
one should proceed as in Proposition 3.1. That is, consider

g(x) := (g1(x), . . . , gq(x), h(x))

and the cone
K := Km1 × . . .×Kmq × {0}

p.

This will lead to an extension of RCRCQ. An extension of the original CRCQ condition can be obtained by
writing the equality constraint as a pair of inequality constraints in the form h(x) ∈ Rp+ and −h(x) ∈ Rp+,
just as in Remark 3.1, then reducing, and applying Definition 4.2 to the new reduced cone.

4.2 Strong second-order optimality conditions for NSOCP

In this subsection we will investigate second-order optimality conditions for (NSOCP) under the facial
constant rank property; and, consequently, under CRCQ as well. Recall that the second-order condition of
Definition 2.1 can be further specialized to the context of NSOCP by characterizing the sigma-term explicitly.
Following Bonnans and Ramı́rez [22], we have for any x̄ ∈ Ω and any of its associate Lagrange multipliers
λ̄ := (λ̄1, . . . , λ̄q) ∈ Λ(x̄), that

σ(d, x̄, λ̄) =

q∑
j=1

dTHj(x̄, λ̄j)d

for every d ∈ C(x̄), where

Hj(x̄, λ̄j) :=


− [λ̄j ]0

[gj(x̄)]0
Dgj(x̄)TRmjDgj(x̄), if j ∈ IB(x̄),

0, otherwise.

(31)

With this in mind, we can prove that SOC holds at (x̄, λ̄) under the facial constant rank property by
means of analysing the problem along the curve ξ(t) from the proof of Theorem 4.1.

Theorem 4.3. Let x̄ be a local minimizer of problem (NSOCP) that satisfies the facial constant rank
property. Then, for any given Lagrange multiplier λ̄ ∈ Λ(x̄), the pair (x̄, λ̄) satisfies SOC as in Definition 2.1;
that is,

dT∇2f(x̄)d+

q∑
j=1

〈
D2gj(x̄)[d, d], λ̄j

〉
− σ(d, x̄, λ̄) ≥ 0, (32)

for every d ∈ C(x̄) = LΩ(x̄) ∩ {∇f(x̄)}⊥.

Proof. If Λ(x̄) = ∅, the result holds trivially. Otherwise, let λ̄ := (λ̄1, . . . , λ̄q) ∈ Λ(x̄) be arbitrary and fixed.
Our aim is to prove that inequality (13) holds for the pair (x̄, λ̄), for every d ∈ C(x̄). So let d ∈ C(x̄) be
also arbitrary, and let F be as in (24). Recall that, for the sake of simplicity and without loss of generality,
we are assuming IB(x̄) = {1, . . . , |IB(x̄)|}.

Proceeding in the same way as in the proof of Theorem 4.1, since the facial constant rank property holds
at x̄ and d ∈ LΩ(x̄), we can construct a curve ξ : (−ε, ε) → Rn, for some ε > 0, such that: ξ(0) = x̄,
ξ′(0) = d, and G(ξ(t)) ∈ span(F ) for every t ∈ (−ε, ε). In addition, G(ξ(t)) ∈ F for every t ∈ [0, ε), meaning
ξ(t) is feasible for all such t. Since x̄ is a local minimizer of (NSOCP), then t = 0 is a local minimizer of the
function ϕ(t) := f(ξ(t)) subject to the constraint t ≥ 0. Then, it is easy to see that

ϕ′′(0) = dT∇2f(x̄)d+∇f(x̄)T ξ′′(0) ≥ 0. (33)

The rest of this proof consists of computing ∇f(x̄)T ξ′′(0). To do this, we will use an auxiliary comple-
mentarity function defined as

R(t) :=
∑

j∈I0(x̄)

〈gj(ξ(t)), λ̄j〉+
∑

j∈IB(x̄)

[λ̄j ]0φj(ξ(t)).

First, we claim that R(t) = 0 for every t ∈ (−ε, ε). Let us prove this, analysing each term separately:

1. For each j ∈ I0(x̄), it follows from the KKT conditions that

〈Dgj(x̄)d, λ̄j〉 = 〈d,Dgj(x̄)T λ̄j〉 = 〈d,−∇f(x̄)〉 = 0, (34)

which implies the following:
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• If Dgj(x̄)d ∈ int(Kmj ), then λ̄j = 0, since λ̄j ∈ K◦mj
;

• If Dgj(x̄)d ∈ bd+(Kmj ) we have gj(ξ(t)) ∈ span(Dgj(x̄)d), and consequently, 〈gj(ξ(t)), λ̄j〉 = 0
for every t ∈ (−ε, ε) due to (34);

• If Dgj(x̄)d = 0, then g(ξ(t)) = 0 also for every t ∈ (−ε, ε), due to (25).

The above reasoning implies that 〈gj(ξ(t)), λ̄j〉 = 0 for every t ∈ [0, ε) and every j ∈ I0(x̄).

2. For each j ∈ IB(x̄), consider J as in (26) and it follows that if ∇φj(x̄)T d = 0, then φj(ξ(t)) = 0 for

every t ∈ (−ε, ε). On the other hand, recall that λ̄j =
[λ̄j ]0

[gj(x̄)]0
Rmjgj(x̄) for every j ∈ IB(x̄) due to

complementarity, but using (21), we see that

[λ̄j ]0〈∇φj(x̄), d〉 =
[λ̄j ]0

[gj(x̄)]0
〈Dgj(x̄)TRmjgj(x̄), d〉 = 〈λ̄j , Dgj(x̄)d〉 = 0.

Therefore, if 〈∇φj(x̄), d〉 > 0, then [λ̄j ]0 = 0.

Knowing that R(t) = 0 for every t ∈ (−ε, ε), we obtain that the derivatives of R(t) are also zero for all
such t. Let us compute them: the first derivative of R(t) is given by

R′(t) =
∑

j∈I0(x̄)

〈
Dgj(ξ(t))ξ

′(t), λ̄j
〉

+
∑

j∈IB(x̄)

[λ̄j ]0
〈
∇φj(ξ(t)), ξ′(t)

〉
,

and the derivative of R′(t) is

R′′(t) =
∑

j∈I0(x̄)

〈
D2gj(ξ(t))[ξ

′(t), ξ′(t)], λ̄j
〉

+
∑

j∈I0(x̄)

〈
Dgj(ξ(t))

T λ̄j , ξ
′′(t)

〉
+

∑
j∈IB(x̄)

[λ̄j ]0
(〈
D2φj(ξ(t))ξ

′(t), ξ′(t)
〉

+
〈
∇φj(ξ(t)), ξ′′(t)

〉)
.

Since R′′(t) is continuous, taking the limit t→ 0, we obtain

R′′(0) = lim
t→0+

R′′(t) =
∑

j∈I0(x̄)

〈
D2gj(x̄)[d, d], λ̄j

〉
+

∑
j∈I0(x̄)

〈
Dgj(x̄)T λ̄j , ξ

′′(0)
〉

+
∑

j∈IB(x̄)

[λ̄j ]0

(〈
D2φj(x̄)d, d

〉
+

1

[gj(x̄)]0

〈
Dgj(x̄)TRmjgj(x̄), ξ′′(0)

〉)
.

The above expression can be simplified using the relation

〈
D2φj(x̄)d, d

〉
=
〈D̂gj(x̄)d, ĝj(x̄)〉2

‖ĝj(x̄)‖3
− ‖D̂gj(x̄)d‖2

‖ĝj(x̄)‖
+
〈
D2gj(x̄)[d, d],∇φj(x̄)

〉
=

1

[gj(x̄)]0

(〈
RmjDgj(x̄)d, Dgj(x̄)d

〉
+
〈
D2gj(x̄)[d, d], Rmjgj(x̄)

〉)
,

which can be directly computed from the definition of φj , j ∈ IB(x̄), since in this case [gj(x̄)]0 = ‖ĝj(x̄)‖
and 〈Dgj(x̄)d,Rmjgj(x̄)〉 = 0. Then, we get

R′′(0) =
∑

j∈I0(x̄)∪IB(x̄)

〈
D2gj(x̄)[d, d], λ̄j

〉
+

∑
j∈I0(x̄)∪IB(x̄)

〈
Dgj(x̄)T λ̄j , ξ

′′(0)
〉

+
∑

j∈IB(x̄)

[λ̄j ]0
[gj(x̄)]0

〈
RmjDgj(x̄)d, Dgj(x̄)d

〉
= 0. (35)

Moreover, by the KKT conditions, we have

∇f(x̄)T ξ′′(0) = −
∑

j∈I0(x̄)∪IB(x̄)

〈
Dgj(x̄)T λ̄j , ξ

′′(0)
〉
,

which yields together with equation (35), the following:

∇f(x̄)T ξ′′(0) =
∑

j∈I0(x̄)∪IB(x̄)

〈
D2gj(x̄)[d, d], λ̄j

〉
+

∑
j∈IB(x̄)

[λ̄j ]0
[gj(x̄)]0

dTDgj(x̄)TRmjDgj(x̄)d. (36)
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Therefore, since λ̄j = 0 for every j ∈ Iint(x̄),

dT∇2f(x̄)d+

q∑
j=1

〈
D2gj(x̄)[d, d], λ̄j

〉
− σ(d, x̄, λ̄) ≥ 0.

Since d ∈ C(x̄) is arbitrary, we conclude that x̄ satisfies SOC with respect to λ̄, which was also chosen
arbitrarily and remained fixed from the very beginning. Thus, the proof is complete.

Observe that Theorem 4.3 implies that the facial constant rank property ensures the fulfilment of the
strong second-order necessary condition at a given point x̄, in the sense that for every λ̄ ∈ Λ(x̄), and
every d ∈ C(x̄), inequality (13) holds true. If, in addition, H(x̄) is closed (CRCQ), then Λ(x̄) 6= ∅, and as
consequence, we obtain that the strong second-order condition is satisfied in the presence of CRCQ. It is also
worth mentioning that since the strong necessary condition of Theorem 4.3 implies the classical condition
of Theorem 2.2, then it also induces a sufficient second-order optimality condition after replacing ≥ by > in
inequality (32).

Remark 4.3. In contrast with the facial constant rank property, the condition presented in [61, Definition
2.1] fails to be a CQ even when H(x̄) is closed. In fact, let us recall the counterexample presented in [5]:

Minimize f(x) := −x,
s.t. g(x) := (x, x+ x2) ∈ K2,

The unique solution of this problem is x̄ = 0. For this particular example, [61, Definition 2.1] holds if, and
only if, {1, 1 + 2x} remain with constant rank in some neighborhood of x̄ (one may consider also all of its
subfamilies, see [5]). Of course, this is verified, and since K2 is polyhedral, the set H(x̄) is closed. However,
x̄ does not satisfy the KKT conditions.

On the other hand, to see that CRCQ as in Definition 4.2 does not hold at x̄, take F := cone((1, 1)) E K2

and note that
Dg(x)T [F⊥] = span(−2x)

has dimension 1 for every x 6= 0, but has dimension zero at x̄. In particular, this example shows that CRCQ
as in Definition 4.2 is not a mere correction of the condition presented in [61], and that the condition of [61]
cannot be corrected by simply adding the closedness of H(x̄) to its definition.

4.3 About the sequential constant rank CQ

In [9], we introduced an alternative extension of CRCQ for (NSOCP) that was based on a special re-
characterization of the nondegeneracy condition [7] in terms of the eigenvectors of some perturbations of
g(x̄). Let us recall an equivalent characterization of it, which will be used here as a definition for simplicity.

Definition 4.3 (Seq-CRCQ for NSOCP). Let x̄ ∈ Ω. We say that the Sequential-CRCQ (Seq-CRCQ)
condition holds at x̄ if for every vector w̄j ∈ Rmj−1 with ‖w̄j‖ = 1, j ∈ I0(x̄), there is a neighborhood V of
(x̄, w̄), w̄ := (w̄j)j∈I0(x̄), such that: for all subsets J1, J2 ⊆ I0(x̄) and J3 ⊆ IB(x̄), if the family

D(x,w) :=
{
Dgj(x)T (1,−wj)

}
j∈J1

⋃{
Dgj(x)T (1, wj)

}
j∈J2

⋃{
Dgj(x)T

(
1,− ĝj(x)

‖ĝj(x)‖

)}
j∈J3

is linearly dependent at (x,w) := (x̄, w̄), then D(x,w) remains linearly dependent for all (x,w) ∈ V such
that ‖wj‖ = 1, j ∈ J1 ∪ J2, where w := (wj)j∈I0(x̄).

This constraint qualification was used in [9] to achieve global convergence of a class of algorithms to
KKT points, and some interesting properties were shown together with a weaker variant of Seq-CRCQ.
Namely, it is also independent of Robinson’s CQ, strictly weaker than nondegeneracy, and it implies the
metric subregularity CQ (also known as error bound CQ). Moreover, note that if I0(x̄) = ∅, then Seq-CRCQ
coincides with the facial constant rank property, which in turn coincides with CRCQ. However, this is not
necessarily true otherwise. In the following example, we show that CRCQ according to Definition 4.2 does
not imply Seq-CRCQ.
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Example 4.3. Consider the constraint:

g(x) = (x,−x, 0) ∈ K3,

and let x̄ = 0, a feasible point. Since g is affine, then the facial constant rank property holds at x̄ (see
Remark 4.1). Now, let us show that H(x̄) is closed: since g(x̄) = 0, it holds that

H(x̄) = Dg(x̄)TK3 = {v1 − v2 | (v1, v2, v3) ∈ K3} = R+.

Therefore, H(x̄) is a closed set, and CRCQ according to Definition 4.2 holds at x̄.
On the other hand, Seq-CRCQ does not hold at x̄, since for any w = (w1, w2) ∈ R2,

Dg(x̄)T (1, w) = 1− w1 and Dg(x̄)T (1,−w) = 1 + w1;

then, take w̄ = (1, 0) and any sequence {wk}k∈N → w̄ such that wk1 6= 1 for all k ∈ N, to see that
Dg(x̄)T (1, wk1 ) 6= 0 for every k ∈ N, but Dg(x̄)T (1, w̄) = 0.

We were not able to prove nor find a counterexample for the converse statement. However, with only
Example 4.3 at hand, we already know that CRCQ is in the worst case independent of Seq-CRCQ, and in
the best case, strictly weaker than it, meaning the results of this paper either improve or are parallel to the
results of [9].

5 Nonlinear semidefinite programming

In this section, we will study constant rank conditions for nonlinear semidefinite programming problems,
which can be stated in standard form as follows:

Minimize f(x),
s.t. G(x) � 0.

(NSDP)

This problem can be seen as a particular case of (NCP), letting E = Sm be the space of m×m symmetric
matrices with real entries, and

K = Sm+ := {A ∈ Sm | zTAz ≥ 0, ∀z ∈ Rm}

be the cone of all m×m symmetric positive semidefinite matrices, with G : Rn → E being twice continuously
differentiable. The symbol � denotes the partial order induced by Sm+ , meaning that A � B if, and only if,
A−B ∈ Sm+ . In this section, for any given A ∈ Sm we will denote by µi(A) the i-th eigenvalue of A arranged
in non-increasing order, and ui(A) will denote an associated unitary eigenvector.

Recall from Section 3 that the constant rank constraint qualification can be obtained in two steps: first,
reduce the problem to consider only the locally relevant part of the constraint; then, analyse the image of
the faces of the reduced cone by the derivative of the reduced constraint function. Therefore, we begin by
recalling a matrix analysis lemma that will be useful for the reduction part.

Lemma 5.1. Let Ā � 0 and denote by r the rank of Ā. Also, let Ē ∈ Rm×m−r be a matrix whose columns
form an orthonormal basis of Ker(Ā). Then, there exists an analytic matrix function E : Sm → Rm×m−r
such that E(Ā) = Ē and, for all A close enough to Ā, the columns of E(A) form an orthonormal basis of the
space spanned by the eigenvectors associated with the m− r smallest eigenvalues of A.

Proof. Although this proof can be found in [24, Example 3.140] and [16, Section 2.3], we shall include it
here for completeness purposes. For any given A ∈ Sm, let S(A) be the space spanned by the eigenvectors
ur+1(A), ..., um(A), and let Π(A) denote the orthogonal projection matrix onto S(A). It is known that
Π(A) is an analytic function of A in a sufficiently small neighborhood of Ā (see, for example, [40, Theorem
1.8]). Consequently, the function V (A) := Π(A)Ē is also an analytic function of A in a neighborhood of
Ā, and moreover V (Ā) = Ē. It follows that for all A sufficiently close to Ā, the rank of V (A) is equal to
the rank of V (Ā) = Ē, so the m − r columns of V (A) are linearly independent, and Im(V (A)) = S(A),
when A is sufficiently close to Ā. Now, let E(A) be a matrix whose columns are obtained by applying the
Gram-Schmidt orthonormalization process to the columns of V (A). The matrix E(A) is well-defined and
also analytic in a neighborhood of Ā. Moreover, it satisfies E(A)T E(A) = Im−r and Im(E(A)) = S(A), for
all A sufficiently close to Ā, and E(Ā) = V (Ā) = Ē, which concludes the proof. Notice however that the
columns of E(A) are not necessarily eigenvectors of A.
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Now, let x̄ ∈ Ω, denote by r the rank of G(x̄), and let Ē ∈ Rm×m−r be an arbitrary matrix with or-
thonormal columns that span Ker(G(x̄)). Moreover, let E be the analytic matrix function with the properties
described in Lemma 5.1, such that E(G(x̄)) = Ē. Observe that Sm+ is reducible to

C := Sm−r+

in a neighborhood N of G(x̄) by the mapping Ξ: N → Sm−r given by

Ξ(Y ) := E(Y )TY E(Y ),

for every Y ∈ N close enough to G(x̄) so that µi(Y ) > 0 for every i = 1, . . . , r. Then, define the function
E := E ◦G, consider the reduced constraint function

G(x) := E(x)TG(x)E(x),

and for every x sufficiently close to x̄, we have that G(x) ∈ Sm+ if, and only if, G(x) ∈ Sm−r+ . Moreover, it is
worth recalling that, since the function E is analytic, the degree of differentiability of G is the same as of G.

Following Bonnans and Shapiro [24, Equation 5.161], we see that the linearized cone of the original
constraints of (NSDP) at x̄ ∈ Ω can be written as

LΩ(x̄) =
{
d ∈ Rn | ĒTDG(x̄)dĒ � 0

}
,

which also coincides with the linearized cone of the reduced constraint at x̄, because E(x̄) = Ē and for each
x close enough to x̄, we have

DG(x)[ · ] = DE(x)[ · ]TG(x)E(x) + E(x)TDG(x)[ · ]E(x) + E(x)TG(x)DE(x)[ · ],

so DG(x̄)[ · ] = ĒTDG(x̄)[ · ]Ē. For more details on this reduction approach, see [21, 23].
In the next section, we will introduce a constant rank-type condition for NSDP by means of the faces of

the reduced cone.

5.1 A facial constant rank constraint qualification for NSDP

Following the exposition of Pataki [51], the faces of C = Sm−r+ can be represented in a very simple way: F is
a face of Sm−r+ if, and only if, there exists an orthogonal matrix U ∈ Rm−r×m−r and some s ∈ {1, . . . ,m− r}
such that

F =

{
U

[
A11 0
0 0

]
UT

∣∣∣∣ A11 ∈ Ss+
}
.

With this in mind, let us define the analogue of Definition 4.2 for NSDP:

Definition 5.1. Let x̄ ∈ Ω and let r be the rank of G(x̄). We say that the facial constant rank property
holds at x̄ if there exists a neighborhood V of x̄ such that: for each F E Sm−r+ , the dimension of DG(x)T [F⊥]
remains constant for every x ∈ V.

Following the discussion after Proposition 3.1 and also after Definition 4.1, to better visualize the meaning
of Definition 5.1, recall that Ω is locally equivalent to G−1(Sm−r+ ) and that the faces of Sm−r+ can be regarded
as linear approximations of Sm−r+ , in some sense. Then, for every F E Sm−r, the set DG(x)−1(span(F ))
defines a possible linear approximation of Ω around x̄. The reasoning after Proposition 3.1 still holds in
the context of NSDP and it follows that the facial constant rank property holds at x̄ ∈ Ω if, and only if,
the dimension of DG(x)−1(span(F )) remains constant for all x in a neighborhood of x̄, at every F E Sm−r+ .
From this point of view, the facial constant rank property demands all linear approximations of the feasible
set to remain with constant dimension in the vicinity of x̄.

Now, we proceed to the main result of this section.

Theorem 5.1. Let x̄ ∈ Ω. If x̄ satisfies the facial constant rank property, then TΩ(x̄) = LΩ(x̄).

Proof. Let d ∈ LΩ(x̄), denote by s the rank of ĒTDG(x̄)dĒ, and let Q̄ ∈ Rm−r×m−r be an orthogonal
matrix such that

Q̄T ĒTDG(x̄)dĒQ̄ =

[
R 0
0 0

]
,
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where R � 0 is an s×s diagonal matrix. Let W̄ be the matrix formed by the columns of Q̄ corresponding to
the positive eigenvalues of ĒTDG(x̄)dĒ; that is, W̄T ĒTDG(x̄)dĒW̄ = R. Then, consider the face of Sm−r+

given by

F :=

{
Q̄

[
A11 0
0 0

]
Q̄T

∣∣∣∣ A11 ∈ Ss+
}

(37)

and note that ĒTDG(x̄)dĒ ∈ F . Let η1, . . . , ηN be a basis of F⊥, where N := dim(F⊥), and note that

DG(x)T [F⊥] = span

({
DG(x)T [ηi]

}
i∈{1,...,N}

)
. (38)

Therefore, the facial constant rank property can be equivalently stated as the constant rank of the family{
DG(x)T [ηi]

}
i∈{1,...,N}

in a neighborhood of x̄. Furthermore, let ζi(x) := 〈G(x), ηi〉 and note that

∇ζi(x) = DG(x)T [ηi]

for every i ∈ {1, . . . , N}.
Then, by Proposition 4.1, there exist two neighborhoods V1 and V2 of x̄, and a curve ψ : V1 → V2 such

that ψ(x̄) = x̄, Dψ(x̄) = In, and ζi(ψ
−1(x̄+ y)) = ζi(x̄) for every i ∈ {1, . . . , N} and every y in the subspace

S := {y ∈ Rn | 〈∇ζi(x̄), y〉 = 0, ∀i ∈ {1, . . . , N}} .

Since DG(x̄)d ∈ F , we see that 〈d,DG(x̄)T [ηi]〉 = 〈DG(x̄)d, ηi〉 = 0 for every i ∈ {1, . . . , N}, so d ∈ S. Then,
let ε > 0 be such that x̄ + td ∈ V2 for every t ∈ (−ε, ε), and define ξ(t) := ψ−1(x̄ + td) for every such t.
Moreover, note that ξ′(t) = d and ξ(0) = x̄.

Now, for every t ∈ (−ε, ε), we have 〈G(ξ(t)), ηi〉 = 0 for every i ∈ {1, . . . , N}, whence follows that

G(ξ(t)) ∈ span(F )

for every such t, meaning also

Q̄TG(ξ(t))Q̄ =

[
W̄TG(ξ(t))W̄ 0

0 0

]
.

On the other hand, considering the Taylor expansion of G(ξ(t)) around t = 0,

G(ξ(t)) = ĒTG(x̄)Ē + tĒTDG(x̄)dĒ + o(t) = tĒTDG(x̄)dĒ + o(t),

we observe that
W̄TG(ξ(t))W̄ = tW̄T ĒTDG(x̄)dĒW̄ + o(t) = tR+ o(t) � 0,

for t ∈ [0, ε), shrinking ε if necessary. Thus,

G(ξ(t)) ∈ F ⊆ Sm−r+

for every t ∈ [0, ε), and then G(ξ(t)) � 0 for all such t. Therefore, it follows that d ∈ TΩ(x̄).

Remark 5.1. Similarly to Remark 4.1, we observe that if G is affine, then every x̄ ∈ Ω satisfies the facial
constant rank property, which implies it is not a CQ on its own, unless H(x̄) as defined in (2) is closed.
We remark this fact because it implies that the weakest CQ that guarantees zero duality gap in linear SDP
problems is the closedness of H(x̄).

With this in mind, we present our extension of CRCQ (and RCRCQ) for NSDP:

Definition 5.2 (CRCQ). Let x̄ ∈ Ω. We say that x̄ satisfies the constant rank constraint qualification
condition for NSDP (CRCQ) if it satisfies the facial constant rank property and, in addition, H(x̄) is closed.

And, as an immediate consequence of Theorem 5.1, we obtain the following:

Theorem 5.2. Let x̄ ∈ Ω. If x̄ satisfies CRCQ, then it also satisfies Abadie’s CQ.

Now, we are led to compare our CRCQ condition with other CQs from the literature. First, let us show
that it is, in general, independent of Robinson’s CQ.

19



Example 5.1. Consider the following constraint:

G(x) :=

[
−x 0
0 x

]
.

The only feasible point is x̄ = 0, for which one has G(x̄) = 0 ∈ S2
+. Since G is linear it is enough to show

that H(x̄) is closed (see Remark 5.1). In this case,

H(x̄) =

{
DG(x̄)TA

∣∣∣∣ A =

[
a11 a12

a12 a22

]
∈ S2

+

}
.

Since DG(x̄)TA = 〈DG(x̄), A〉 = a22 − a11, but a11 and a22 are both nonnegative, it follows that H(x̄) = R,
which is closed. On the other hand, Robinson’s CQ does not hold at x̄. In fact, given a real number d ∈ R,
we have that

G(x̄) +DG(x̄)d =

[
−d 0
0 d

]
,

which is not in int(S2
+) regardless of d ∈ R.

The above example shows that CRCQ does not imply Robinson’s CQ. Conversely, we will show in the
next example, that Robinson’s CQ does not imply CRCQ either.

Example 5.2. Consider the following constraint given by

G(x) :=

[
x2 x2

1

x2
1 x2

]
at the point x̄ = (0, 0). Then, for any direction d = (d1, d2) ∈ R2, it follows that

DG(x)d =

[
0 2x1

2x1 0

]
d1 +

[
1 0
0 1

]
d2.

Now, consider d = (0, 1). Then

G(x̄) +DG(x̄)d =

[
1 0
0 1

]
∈ int(S2

+)

and Robinson’s CQ holds at x̄. In order to analyze whether CRCQ holds at x̄ or not, let Ē ∈ R2×2 be a
given orthogonal matrix and let us define G(x) := ĒTG(x)Ē. Then, take

F :=

{
ĒT

[
a 0
0 0

]
Ē

∣∣∣∣ a ≥ 0

}
E S2

+

and note that
DG(x)T [F⊥] = DG(x)T [ĒF⊥ĒT ] = span ({∇G12(x),∇G22(x)}) .

Then, since ∇G12(x) = [2x1, 0]T and ∇G22(x) = [0, 1]T , for every x ∈ R2, the dimension of the subspace
above is 1 at x̄, but it is equal to 2 for every x close enough to x̄ such that x1 6= 0. Therefore, CRCQ does
not hold at x̄.

Remark 5.2. Note that the construction of Lemma 5.1 does not guarantee uniqueness of E, and G depends
on the choices of Ē and also of E. Therefore, Definition 5.2 also depends on Ē and E. In Example 5.2, we
considered every Ē, and the simplest choice of E (constantly equal to Ē, which is admissible for Lemma 5.1
when r = 0), but a priori, different E may lead to different variants of CRCQ. Nevertheless, we should
stress that they are all valid constraint qualifications and the results of this paper concerning CRCQ as in
Definition 5.2 hold true for all choices of Ē and E. Observe that the discussion of this remark, on the choice
of the reduction, also applies for the NSOCP version of CRCQ (Definition 4.2), where a different choice of
reduction function φ in (20) may lead to a different version of CRCQ.

Recall that the nondegeneracy condition holds at x̄ if, and only if, DG(x̄)T is injective. By the continuity
of DG, we have that if x̄ satisfies nondegeneracy, then DG(x)T remains injective for every x sufficiently close
to x̄. Then, the dimension of DG(x)T [F⊥] remains constant for every such x, at every F E Sm−r+ , and it
follows that nondegeneracy strictly implies CRCQ as in Definition 5.2.
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Remark 5.3. Note that our approach can be trivially extended to an NSDP problem with multiple constraints.
Moreover, to deal with a separate equality constraint h(x) = 0, where h : Rn → Rp, in the same spirit of
Remark 4.2, one should consider a constraint in the form

g(x) := (G(x), h(x)) and K := Sm+ × {0}p.

This yields an extension of RCRCQ after applying Definition 5.2 to the reduced form of this new problem,
since F E K if, and only if, F = R × {0}p, where R E Sm+ in this case. To extend CRCQ one should write
the equality constraint as a pair of inequality constraints in the form h(x) ∈ Rp+ and −h(x) ∈ Rp+, giving rise
to a multifold NSDP problem where R+ is seen as a copy of S1

+.

For a last comparison, we should mention a constraint qualification presented in one of our previous
works [8], which was called Sequential CRCQ (Seq-CRCQ) therein. As a matter of fact, Seq-CRCQ differs
from Definition 5.2 in many aspects. For instance, Example 5.1 shows that Seq-CRCQ is not implied
by CRCQ. This example has already appeared in [8, Example 4.1], where we show that Seq-CRCQ is not
satisfied at x̄ = 0; on the other hand, we showed in Example 5.1, that CRCQ holds at x̄. Thus, CRCQ is
either strictly weaker than Seq-CRCQ, or completely independent of it. Despite our efforts to clarify the
converse statement, we were not able to prove nor find a counterexample for it, so this is left as an open
problem.

5.2 Strong second-order optimality conditions for NSDP

The earliest work that provides a practical characterization of the sigma-term in NSDP is Shapiro’s [55],
using second-order directional derivatives of the least eigenvalue function, µmin : Sm → R. Shapiro proved
that

σ(d, x̄, λ̄) = dTH(x̄, λ̄)d,

for any d ∈ C(x̄) and λ̄ ∈ Λ(x̄), where

H(x̄, λ̄) :=
[
2
〈
DxiG(x̄)G(x̄)†DxjG(x̄), λ̄

〉]
i,j=1,...,n

and G(x̄)† denotes the Moore-Penrose pseudoinverse of G(x̄). Shapiro also proved that if a local minimizer
x̄ ∈ Ω satisfies nondegeneracy and its associated Lagrange multiplier λ̄ ∈ Λ(x̄) is such that rank(λ̄) +
rank(G(x̄)) = m (strict complementarity), then x̄ satisfies SOC with respect to λ̄.

Later, other authors provided creative ways of obtaining SOC via some local reformulation of (NSDP)
with no curvature. For instance, Lourenço et al. [43] wrote G(x) � 0 in the form G(x) − Z2 = 0 with an
additional variable Z ∈ Sm, and then obtained SOC for NSDP out of SOC for NLP – under nondegeneracy
and strict complementarity. Forsgren [27] rediscovered Shapiro’s characterization of the sigma-term and
obtained SOC (under nondegeneracy, but without strict complementarity) using a special reformulation of
the problem. Jarre [38] provided an elementary construction of SOC via a certain Schur complement, under
nondegeneracy, strict complementarity, and assuming that the tangent cone of the linearized constraint
G(x̄) +DG(x̄)d ∈ K coincides with TΩ(x̄). Fukuda et al. [28] used the characterization

Sm+ = {Z ∈ Sm | ‖ΠSm+ (−Z)‖2 = 0}

combined with an external penalty method and the Clarke subdifferential of ΠSm+ , to achieve a weaker second-

order condition, which is stated only in terms of the lineality space of C(x̄). However, their results were
obtained assuming only Robinson’s CQ together with the so-called weak constant rank (WCR) property,
which is not a CQ on its own.

Following this line of research, the main contribution of this section consists of proving that every local
minimizer x̄ of (NSDP) satisfies SOC with respect to any Lagrange multiplier λ̄ ∈ Λ(x̄) under the facial
constant rank property. In particular, when in addition H(x̄) is closed (which leads to CRCQ), then the
facial constant rank property implies Λ(x̄) 6= ∅. A priori, we make no special requirement on Λ(x̄).

Theorem 5.3. Let x̄ ∈ Ω be a local minimizer of (NSDP) satisfying the facial constant rank property.
Then, for every λ̄ ∈ Λ(x̄), the pair (x̄, λ̄) satisfies SOC; that is,

dT∇2f(x̄)d+
〈
D2G(x̄)[d, d], λ̄

〉
− σ(d, x̄, λ̄) ≥ 0

holds for every d ∈ C(x̄) = LΩ(x̄) ∩ {∇f(x̄)}⊥.
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Proof. If Λ(x̄) = ∅, then the result holds trivially; otherwise, let λ̄ ∈ Λ(x̄) be arbitrary and fixed. Let
r := rank(G(x̄)), and let Ē ∈ Rm×m−r and P̄ ∈ Rm×r be matrices with orthonormal eigenvector columns
associated with the zero and positive eigenvalues of G(x̄), respectively. Define Ū := [Ē, P̄ ]. Moreover, let E
be as in Lemma 5.1 and such that limx→x̄E(x) = Ē, where E(x) := E(G(x)) for every x ∈ Rn.

Now, let d ∈ C(x̄) be arbitrary; so ∇f(x̄)T d = 0 and ĒTDG(x̄)dĒ � 0. Following the proof of
Theorem 5.1, let Q̄ := [Z̄, W̄ ] ∈ Rm−r×m−r be an orthogonal matrix such that Z̄T ĒTDG(x̄)dĒZ̄ = 0
and W̄T ĒTDG(x̄)dĒW̄ � 0, and let s denote the rank of ĒTDG(x̄)dĒ. Moreover, let F E Sm−r+ be defined
as in (37); that is:

F :=

{
Q̄

[
A11 0
0 0

]
Q̄T

∣∣∣∣ A11 ∈ Ss+
}
,

and note that ĒTDG(x̄)dĒ ∈ F . Similarly to the proof of Theorem 5.1, since the facial constant rank
property holds at x̄, there exists some ε > 0 and a twice continuously differentiable curve ξ : (−ε, ε) → Rn
such that ξ(0) = x̄, ξ′(0) = d, and

G(ξ(t)) ∈ span(F )

for all t ∈ (−ε, ε). Moreover, G(ξ(t)) ∈ F for every t ∈ [0, ε). Since x̄ is a local minimizer of (NSDP) and
ξ(t) is feasible for every small t ≥ 0, then t = 0 is a local minimizer of the function φ(t) := f(ξ(t)) subject
to t ≥ 0. Consequently, it is easy to see that

φ′′(0) = dT∇2f(x̄)d+∇f(x̄)T ξ′′(0) > 0. (39)

The rest of the proof consists of computing the term ∇f(x̄)T ξ′′(0). By construction, we have G(ξ(t)) ∈
span(F ) for every t ∈ (−ε, ε), so Z̄TG(ξ(t))Z̄ = 0 and the reduced complementarity function

R(t) :=
〈
Z̄TG(ξ(t))Z̄, Z̄T ĒT λ̄ĒZ̄

〉
has value zero, for all t ∈ (−ε, ε). Therefore,

R′(t) =
〈
Z̄T (DE(ξ(t))ξ′(t))TG(ξ(t))E(ξ(t))Z̄, Z̄T ĒT λ̄ĒZ̄

〉
+
〈
Z̄TE(ξ(t))TDG(ξ(t))ξ′(t)E(ξ(t))Z̄, Z̄T ĒT λ̄ĒZ̄

〉
+
〈
Z̄TE(ξ(t))TG(ξ(t))DE(ξ(t))ξ′(t)Z̄, Z̄T ĒT λ̄ĒZ̄

〉
also has value zero for every small t. Differentiating once more, and taking the limit t→ 0, we obtain

R′′(0) =
〈
Z̄T ĒTD2G(x̄)[d, d]ĒZ̄ + Z̄T ĒTDG(x̄)ξ′′(0)ĒZ̄, Z̄T ĒT λ̄ĒZ̄

〉
+ 2

〈
Z̄T (DE(x̄)d)TDG(x̄)dĒZ̄ + Z̄T ĒTDG(x̄)dDE(x̄)dZ̄, Z̄T ĒT λ̄ĒZ̄

〉
+ 2

〈
Z̄T (DE(x̄)d)TG(x̄)DE(x̄)dZ̄, Z̄T ĒT λ̄ĒZ̄

〉
= 0. (40)

However, following Shapiro and Fan [57, Equation 3.8], and Bonnans and Ramı́rez [23, Equation 67], we see
that

DE(x̄)d = DE(G(x̄))DG(x̄)d = −G(x̄)†DG(x̄)dĒ. (41)

Substituting (41) into (40), the two last lines of expression (40) can be greatly simplified, which leads to the
following:

R′′(0) =
〈
Z̄T ĒT

(
D2G(x̄)[d, d] +DG(x̄)ξ′′(0)

)
ĒZ̄, Z̄T ĒT λ̄ĒZ̄

〉
− 2

〈
Z̄T ĒT (DG(x̄)d)TG(x̄)†DG(x̄)dĒZ̄, Z̄T ĒT λ̄ĒZ̄

〉
= 0. (42)

However, by the complementarity condition we have λ̄P̄ = 0, and using the KKT condition together with
∇f(x̄)T d = 0 we obtain

0 = 〈d,−∇f(x̄)〉 = 〈d,DG(x̄)T λ̄〉 = 〈DG(x̄)d, λ̄〉

=
〈
ŪTDG(x̄)dŪ, ŪT λ̄Ū

〉
=
〈
ĒTDG(x̄)dĒ, ĒT λ̄Ē

〉
=
〈
Q̄T ĒTDG(x̄)dĒQ̄, Q̄T ĒT λ̄ĒQ̄

〉
=
〈
Z̄T ĒTDG(x̄)dĒZ̄, Z̄T ĒT λ̄ĒZ̄

〉
,
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but since Z̄T ĒTDG(x̄)dĒZ̄ � 0 and W̄T ĒT λ̄ĒW̄ � 0, this implies

Z̄T ĒT λ̄ĒZ̄ = 0,

which in turn implies λ̄ĒZ̄ = 0. With this at hand, we obtain

R′′(0) =
〈
D2G(x̄)[d, d] +DG(x̄)ξ′′(0)− 2(DG(x̄)d)TG(x̄)†DG(x̄)d, λ̄

〉
= 0, (43)

and, by the KKT conditions, this leads to

∇f(x̄)T ξ′′(0) = −〈DG(x̄)ξ′′(0), λ̄〉 =
〈
D2G(x̄)[d, d]− 2(DG(x̄)d)TG(x̄)†DG(x̄)d, λ̄

〉
. (44)

Substituting (44) into (39) yields

dT∇2f(x̄)d+
〈
D2G(x̄)[d, d], λ̄

〉
− dTH(x̄, λ̄)d ≥ 0.

Since d ∈ C(x̄) was chosen arbitrarily, and λ̄ is fixed from the beginning, the proof is complete.

6 Final remarks

The constant rank constraint qualification (CRCQ) is one of the most important regularity conditions in
nonlinear programming (NLP), with several relevant applications regarding global convergence of algorithms,
second-order optimality conditions, and some topics of stability theory. However, one of the main reasons
why most of these interesting results still remain exclusive to NLP is that CRCQ itself seems intrinsic to
NLP. Until very recently, there was no extension or analogue of it in the conic programming context. In a
recent pair of papers [8, 9], we presented an extension of CRCQ for nonlinear semidefinite and second-order
cone programming using sequences and the eigenvector structure of their respective cones, which would allow
us to adopt a strategy similar to the existing nonlinear programming literature. See also [7]. While this is
interesting from the point of view of algorithms, it may not be an appropriate tool for other uses. Therefore,
in this paper we adopted a more innovative approach: we first characterized CRCQ for NLP in a geometrical
way, by means of the faces of a reduced cone, and then we showed this geometrical characterization could
carry the essence of CRCQ to more general contexts. As far as we know, this is also the first time an
intuitive interpretation of CRCQ was ever presented, and it is surprisingly simple: CRCQ describes the
situations where every possible linear approximation of the feasible set (around a point of interest) preserves
its dimension under small perturbations. As a side note, we should mention that this definition is either
independent or strictly weaker than the ones presented in [8, 9].

As an application of our results, we obtained a strong second-order necessary optimality condition under
CRCQ, in terms of any given Lagrange multiplier. This improves the classical result that is obtained under
nondegeneracy, and serves as an alternative for the condition that can be obtained under Robinson’s CQ,
where for each direction in the critical cone, there is a Lagrange multiplier satisfying the second-order
condition. We expect CRCQ to be an alternative to Robinson’s CQ in other situations, especially those
related with stability analysis of parametric nonlinear conic optimization programs, in view of the nonlinear
programming literature – see, for instance, references [34, 37, 48]. Since CRCQ is independent of Robinson’s
CQ, we believe that this work allows the development of a new parallel strand in the study of stability. In a
recent work, Gfrerer and Mordukhovich [29], fully characterized tilt stable local minimizers of NLP problems
under the so-called bounded extreme point property, which is implied by CRCQ (improving a previous work
that assumed CRCQ and MFCQ [50]), and one of the possibilities of future work mentioned by them is an
extension for conic programs. In a related work, still for NLP, Gfrerer and Outrata [30] obtained similar
results to [29] as an application of the generalized derivative of a particular set-valued mapping, which was
computed assuming the metric subregularity constraint qualification (MSCQ) at the point of interest plus
Robinson’s CQ in its neighborhood. The CRCQ condition as presented in this paper may replace these
assumptions in a possible extension of their results to NSOCP and NSDP. Moreover, we expect CRCQ to
be useful for supporting the convergence theory of some iterative algorithms, and also to encourage the
development of algorithms that rely on faces for solving nonlinear conic problems.

Regarding prospective work, the techniques employed in this paper strongly suggest that a further exten-
sion of CRCQ, for general reducible cones, is possible. In this paper we adopted a more pragmatic approach
by working explicitly with NSOCP and NSDP for clarity, leaving the investigation of a more general result to
future works. In fact, it would also be interesting to not rely on reducibility at all, which should be possible
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by taking into account the faces of the tangent cone to K at g(x̄), or perturbations of it, instead of the faces of
the reduced cone C. Furthermore, this work may inspire extensions of weaker constant rank-type conditions
from NLP (together with their applications) to the conic environment, with emphasis on the well-established
constant positive linear dependence condition [10, 12, 52] and the constant rank of the subspace component
condition [11].
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